Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.

نویسندگان

  • Greg W Burgreen
  • Howard M Loree
  • Kevin Bourque
  • Charles Dague
  • Victor L Poirier
  • David Farrar
  • Edward Hampton
  • Z Jon Wu
  • Thomas M Gempp
  • Reto Schöb
چکیده

The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of centrifugal pump in right ventricular failure due to pulmonary artery hypertension. (A case report)

Background: It has not been yet developed a ost suitable method to treat right ventricular failure due to pulmonar artery hypertention resulted from ventricular arrhythia. Though some case reports about patients ready to heart transplant using left assist device or biventral assist device as bridge have been published in Journals, but nocase concerning application of centrifugal pump for treatm...

متن کامل

An Implantable Ventricular Assist System Employing a Radially Controlled Maglev Centrifugal Blood Pump with Capability to Measure Blood Flow Rate without Additional Sensors

In order to solve the problems of lack of heart donors for transplant, implantable ventricular assist systems (VAS) have been developed to assist the failing heart ventricle. One of the components of a VAS is a blood pump that connects the left ventricle to the aorta. Therefore, the pump flow rate is influenced by the cardio-vascular system. To control the flow rate through the blood pump, real...

متن کامل

Design an Equivalent Left Ventricular Assist Device for Medical Equipment Labs

LVAD is a mechanical pump supporting a weak heart function and blood flow. Sometimes, the heart may not recover fast enough to take over the pumping action immediately after surgery, in such patients a temporary support device has been employed to maintain the pumping action until the patient’s own heart recovers. This device can be considered as a temporary alternative before the process of ar...

متن کامل

Improvement of Left Ventricular Assist Device (LVAD) in Artificial Heart Using Particle Swarm Optimization

In this approach, the Left ventricular assist pump for patients with left ventricular failure isused. The failure of the left ventricle is the most common heart disease during these days. Inthis article, a State feedback controller method is used to optimize the efficiency of a samplingpump current. Particle Swarm Algorithm, which is a set of rules to update the position andvelocity, is applied...

متن کامل

Computational fluid dynamic analysis to prevent aortic root and valve clots during left ventricular assist device support.

Aortic root and valve clots are rare but well described in patients on maximal left ventricular assist device (LVAD) support. We performed a theoretical analysis using computational fluid dynamic analyses in two dimensions to try and ascertain if inflow cannula design/orientation/placement affect aortic root flow dynamics. Two-dimensional computational fluid dynamics using easy CFD-G was perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artificial organs

دوره 28 10  شماره 

صفحات  -

تاریخ انتشار 2004